library(tidyverse)

Here is some code that you can use to explore how similar the exponential distribution is to the geometric distribution. Recall that it is easy to show in a Wright Fisher population of \(N\) diploids (i.e., with \(2N\) gene copies), that the probability that a pair of genes have a common ancestor \(t\) generations in the past is \[ \biggl(1 - \frac{1}{2N}\biggr)^{t-1} \frac{1}{2N} \] Let’s make a function that computes that for \(N\) and different values of \(t\):

G <- function(N, t) {
  (1 - (1 / (2 * N)))^(t - 1) * (1 / (2 * N) )
}

Then let’s look at those values for, say \(t=1,\ldots,50\) when \(N=30\):

geomet <- tibble(
  t = 1:50,
  prob = G(30, 1:50)
)

ggplot(geomet, aes(x = t, y = prob)) +
  geom_col(colour = "black", fill = "white", linewidth = 0.2) +
  theme_bw()

That defines the geometric distribution, which takes discrete values on \(1,2,\ldots\).

Now, remember how we said that a reasonable approximation to those values can be found with the exponential distribution, which also allows for real numbers. Here is a function that defines the approximating exponential distribution: \[ \frac{1}{2N} e^{-\frac{t}{2N}} \]

E <- function(N, t) {
  (1 / (2 * N)) * exp(-t / (2 * N))
}

And here we plot it in blue on top of the geometric distribution for \(N=30\):

expy <- tibble(
  t = 1:50,
  density = E(30, 1:50)
)

ggplot() +
  geom_col(data = geomet, aes(x = t, y = prob), 
           colour = "black", fill = "white", linewidth = 0.2) +
  geom_line(data = expy, aes(x = t, y = density), colour = "blue") +
  theme_bw()

That is pretty darn close, even for an \(N\) as small as 30. And the approximation gets better as \(N\) gets larger….

LS0tCnRpdGxlOiAiQXBwcm94aW1hdGluZyBHZW9tZXRyaWMgRGlzdHJpYnV0aW9ucyB3aXRoIHRoZSBleHBvbmVudGlhbCBkaXN0cmlidXRpb24iCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogZmFsc2UKYXV0aG9yOiAiRXJpYyBDLiBBbmRlcnNvbiIKLS0tCgoKYGBge3IsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkodGlkeXZlcnNlKQpgYGAKCgoKSGVyZSBpcyBzb21lIGNvZGUgdGhhdCB5b3UgY2FuIHVzZSB0byBleHBsb3JlIGhvdyBzaW1pbGFyIHRoZSBleHBvbmVudGlhbApkaXN0cmlidXRpb24gaXMgdG8gdGhlIGdlb21ldHJpYyBkaXN0cmlidXRpb24uICBSZWNhbGwgdGhhdCBpdCBpcyBlYXN5CnRvIHNob3cgaW4gYSBXcmlnaHQgRmlzaGVyIHBvcHVsYXRpb24gb2YgJE4kIGRpcGxvaWRzIChpLmUuLCB3aXRoICQyTiQKZ2VuZSBjb3BpZXMpLCB0aGF0IHRoZSBwcm9iYWJpbGl0eSB0aGF0IGEgcGFpciBvZiBnZW5lcyBoYXZlIGEgY29tbW9uCmFuY2VzdG9yICR0JCBnZW5lcmF0aW9ucyBpbiB0aGUgcGFzdCBpcyAKJCQKXGJpZ2dsKDEgLSBcZnJhY3sxfXsyTn1cYmlnZ3IpXnt0LTF9IFxmcmFjezF9ezJOfQokJApMZXQncyBtYWtlIGEgZnVuY3Rpb24gdGhhdCBjb21wdXRlcyB0aGF0IGZvciAkTiQgYW5kIGRpZmZlcmVudCB2YWx1ZXMgb2YgJHQkOgpgYGB7cn0KRyA8LSBmdW5jdGlvbihOLCB0KSB7CiAgKDEgLSAoMSAvICgyICogTikpKV4odCAtIDEpICogKDEgLyAoMiAqIE4pICkKfQpgYGAKVGhlbiBsZXQncyBsb29rIGF0IHRob3NlIHZhbHVlcyBmb3IsIHNheSAkdD0xLFxsZG90cyw1MCQgd2hlbiAkTj0zMCQ6CmBgYHtyfQpnZW9tZXQgPC0gdGliYmxlKAogIHQgPSAxOjUwLAogIHByb2IgPSBHKDMwLCAxOjUwKQopCgpnZ3Bsb3QoZ2VvbWV0LCBhZXMoeCA9IHQsIHkgPSBwcm9iKSkgKwogIGdlb21fY29sKGNvbG91ciA9ICJibGFjayIsIGZpbGwgPSAid2hpdGUiLCBsaW5ld2lkdGggPSAwLjIpICsKICB0aGVtZV9idygpCmBgYAoKVGhhdCBkZWZpbmVzIHRoZSBnZW9tZXRyaWMgZGlzdHJpYnV0aW9uLCB3aGljaCB0YWtlcyBkaXNjcmV0ZSB2YWx1ZXMgb24gJDEsMixcbGRvdHMkLgoKTm93LCByZW1lbWJlciBob3cgd2Ugc2FpZCB0aGF0IGEgcmVhc29uYWJsZSBhcHByb3hpbWF0aW9uIHRvIHRob3NlIHZhbHVlcyBjYW4gYmUgZm91bmQKd2l0aCB0aGUgZXhwb25lbnRpYWwgZGlzdHJpYnV0aW9uLCB3aGljaCBhbHNvIGFsbG93cyBmb3IgcmVhbCBudW1iZXJzLiAgSGVyZSBpcyBhIGZ1bmN0aW9uCnRoYXQgZGVmaW5lcyB0aGUgYXBwcm94aW1hdGluZyBleHBvbmVudGlhbCBkaXN0cmlidXRpb246CiQkClxmcmFjezF9ezJOfSBlXnstXGZyYWN7dH17Mk59fQokJApgYGB7cn0KRSA8LSBmdW5jdGlvbihOLCB0KSB7CiAgKDEgLyAoMiAqIE4pKSAqIGV4cCgtdCAvICgyICogTikpCn0KYGBgCgpBbmQgaGVyZSB3ZSBwbG90IGl0IGluIGJsdWUgb24gdG9wIG9mIHRoZSBnZW9tZXRyaWMgZGlzdHJpYnV0aW9uIGZvciAkTj0zMCQ6CmBgYHtyfQpleHB5IDwtIHRpYmJsZSgKICB0ID0gMTo1MCwKICBkZW5zaXR5ID0gRSgzMCwgMTo1MCkKKQoKZ2dwbG90KCkgKwogIGdlb21fY29sKGRhdGEgPSBnZW9tZXQsIGFlcyh4ID0gdCwgeSA9IHByb2IpLCAKICAgICAgICAgICBjb2xvdXIgPSAiYmxhY2siLCBmaWxsID0gIndoaXRlIiwgbGluZXdpZHRoID0gMC4yKSArCiAgZ2VvbV9saW5lKGRhdGEgPSBleHB5LCBhZXMoeCA9IHQsIHkgPSBkZW5zaXR5KSwgY29sb3VyID0gImJsdWUiKSArCiAgdGhlbWVfYncoKQoKYGBgCgpUaGF0IGlzIHByZXR0eSBkYXJuIGNsb3NlLCBldmVuIGZvciBhbiAkTiQgYXMgc21hbGwgYXMgMzAuIEFuZCB0aGUgYXBwcm94aW1hdGlvbiBnZXRzCmJldHRlciBhcyAkTiQgZ2V0cyBsYXJnZXIuLi4uCgoKCgo=